
THE OPTIMUM DESIGN OF SEMICONDUCTOR LIQUID-FLOW COOLING 
MECHANISMS 

M. A. Kaganov 

I n z h e n e r n o - F i z i c h e s k i i  Zhurna l ,  

UDC 621.57:537.311.33 

Vol. 15, No. 2, pp. 309-314,  1968 

We have found the distribution for the density of the electric current 
in a thermoelectric battery to ensure the greatest energy efficiency 
under conditions of liquid-flow streamlining. The optimum current 
density and the nature of its change along the battery are functions 
of the temperature conditions, the cooling (refrigerating) capacity, 
the parameters of the liquid flows, the geometric dimensions of the 
battery, and the physical characteristics of the thermoelectric ele- 
ments. 

Semiconduc tor  t h e r m o e l e c t r i c  l iquid-f low cool ing 
and heat ing devices  opera te  under  condi t ions  in whieh 
the t h e r m o e l e c t r i c  e l emen t s - -pos i t i oned  along the 
f low--opera te  under  var ious  t e m p e r a t u r e  condi t ions .  
E a r l i e r  [1,2] we proposed methods of des igning  ba t -  
t e r i e s  to e n s u r e  m a x i m u m  energy  eff ic iency,  with 
cons ide ra t ion  of the l imi ta t ions  imposed on ba t t e ry  
d imens ions ;  it was a s sumed  in this  case  that the ba t -  
t e ry  is made up of l ike e l emen t s  and that the supply 
c u r r e n t  is iden t ica l  for  each. The eff ic iency of the 
t h e r m a l  ba t t e ry  can be improved  by us ing  a va r i e ty  
of s u p p l y - c u r r e n t  dens i t i es  for the t h e r m o e l e c t r i c  
e l emen t s  s i tua ted  along the l iquid flow; this is achieved 
mos t  s imply  by us ing e l emen t s  of var ious  d imens ions  
[3]. It is a s sumed  in [3], as well  as in l a t e r  pub l i ea -  
t ions [4,5] devoted to the design of cooling and heat ing 
m e c h a n i s m s  with m a x i m u m  energy  eff ic iency that the 
c u r r e n t  pa s s ing  through each t h e r m o e l e c t r i c  e l emen t  
mus t  co r r e spond  to the condi t ion of a m a x i m u m  eoef-  
f ie ient  of ene rgy  eff ic iency.  All of the ba t t e ry  e l emen t s  
a re  usua l ly  s e r i e s - c o n n e c t e d  into the e l ec t r i c  c i rcu i t ;  
this forces  us to change the d imens ions  of the e l emen t s  
in accordance  with the t e m p e r a t u r e  d i s t r i bu t ion  along 
the ba t t e ry .  The magni tude  of the c u r r e n t  achieving 
the m a x i m u m  v a n e  for  the conve r s ion  fac tor  [6] is 
given by 

, a s A T  
I ~  pd[V1wO.5z(T~+ T~)--I] " (1) 

When the c u r r e n t  in each of the e l emen t s  is subjec t  
to r e l a t ionsh ip  (1), the en t i re  ba t t e ry  funct ions  with 
m a x i m u m  energy  eff iciency.  However,  ff a c u r r e n t  
I = I 0 p a s s e s  through each of the ba t t e ry  e l emen t s ,  
the cooling capaci ty  of the e l emen t s  is l e s s  than the 
l imi t ;  the re fo re ,  to a t ta in  the specif ied capaci ty  we 
wil l  have to i n c r e a s e  the total  n u m b e r  of e l emen t s  or 
the size of the battery. This becomes particularly 

evident if the temperature difference AT = T 2 - T i 

is not very great. In practice, the difference T 2 - T~ 
at the initial segment of the battery in a number of 

cases may be equal to or less than zero. Here, rela- 

tionship (1) loses significance and the method proposed 

in [4,5] cannot be used at all. 

Let us cons ide r  the p rob lem of f inding the opt imum 
d i s t r ibu t ion  for  the d imens ions  of the ba t t e ry  e l ements  
along the liquid flow (or what is the same ,  the d i s t r i b u -  
t ion of the c u r r e n t  densi ty)  to ensu re  a specif ic  cooling 
capaci ty  for the ba t t e r i e s  with m a x i m u m  energy  effi-  
c iency,  cons ide r ing  the specif ied a r ea  l imi ta t ions .  
The water  equivalence  of the flows and the i r  in i t ia l  
t e m p e r a t u r e s  a re  a s sumed  to be known. 

To s impl i fy  the ca lcu la t ions ,  we wil l  sehemat ize  
the actual  condi t ions  s l ight ly .  The coeff ic ients  for  
the t r a n s f e r  of heat between the junct ions  and the liquid 
flows are  a s sume d  to be r a t h e r  la rge  and we neglect  
the t e m p e r a t u r e  d i f ference  between the ba t t e ry  s u r -  
face and the l iquid flows. In p rac t i ca l  t e r m s ,  as fol-  
lows, for  example ,  f rom [2,7],  such condit ions p r e -  
vai l  when Bi > 15-20.  Moreover ,  we a s sume  that the 
water  equivalent  of the flow s t r e a m l i n i n g  the ho t - junc-  
t ion side is so grea t  that we can neglect  the t e m p e r a -  
tu re  d i f fe rences  at the inle t  and at the outlet.  Such 
condit ions a re  c h a r a c t e r i s t i c  of a number  of in s t a l l a -  
t ions employing in tens ive  ho t - junc t ion  cooling; these 
genera l ly  are found in a i r  and water  condi t ioners .  

In the case  under  cons ide ra t ion  the sys tem of dif- 
f e r en t i a l  equat ions which, under  s t eady- s t a t e  condi-  
t ions ,  c h a r a c t e r i z e  the change in the heat content of 
the p a r a l l e l  liquid flows s t r e a m l i n i n g  the junct ions  of 
the t he r ma l  ba t t e ry  have the fo rm 

W1 dT1 1 ]~ 
-- u ] T t - -  p d - -  (T: - -  T1), (2)  

W~dT~ --aiT~-F =1 d - L  (T~T~) ,  0<~x.~l (3)  
p ,:ix 2 j~p d 

The boundary  condit ions TriO) -- T~(~ and T2(0 ) = 
= T. (~ Since the total  cooling capaci ty  of the ba t t e ry  
is specif ied,  the t e m p e r a t u r e  of the cooling flow at 
the outlet is co r re spond ing ly  specif ied as TI(I ) = Tl(l) 
These  condit ions pe r t a i n  to a s i n g l e - p a s s  flow; how- 
ever ,  in this case of a cons tant  T2(x), the r e su l t s  of 
the ca lcu la t ion  are  independent  of the respec t ive  d i r ec -  
t ions of l iquid mot ion.  

Equations (2) and (3) can be p r e se n t e d  in d imen-  
s ion less  fo rm,  in t roduc ing  the same va r i a b l e s  and 
d i m e n s i o n l e s s  complexes  as in r e f e r e nc e  [1]: 

_ U ~ 1 d "q dqz = (1 + U) ~:1 ~ ~:e - -  "--  , (4)  
Rx d ~  d ~  2 

U ~ t dx2 dq~ (l__U),c~+.q+__ 
R,, d~ dg 2 

o-.< ~ < l ,  -q(o) = ~?), T~ = ~o), rx(1) = W ~ ,  
(5) 

q~(O) = o, q~(1) = ~ , ) ,  q~ (o) = o. 
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Fig .  1. C u r r e n t - d e n s i t y  d i s t r ibu t ion  
over  ba t t e ry  v e r s u s  t e m p e r a t u r e  of 
cold junc t ions  (~-2 = 0.6): 1) C = 0; 2) 
C = 0.01; 3) C = 0.1; 4) C = 1; 5) 

C --~ oo. 

We can now fo rmula te  the p rob l em of ca lcu la t ing  
the p a r a m e t e r s  for a ba t t e ry  with m a x i m u m  energy  
eff iciency in the fol lowing m a n n e r .  We have to de t e r -  
m ine  a funct ion U(~), such that the solut ion of sy s t em 
(4) and (5), sa t i s fy ing  the co r r e spond ing  boundary  con-  

di t ions ,  will  y ie ld  the leas t  value for q2(1) (it is c l ea r  
that the s m a l l e s t  value of q2(1) will  co r respond  to the 
m a x i m u m  of the cooling coeff icient  e). 

The fo rmula ted  va r i a t iona l  p rob lem- -wi th  the con-  
di t ional  e x t r e m u m - - i s  the Mayer  p rob lem [8]. This  
p rob lem can be solved by c l a s s i c a l  methods.  The mos t  
common  approach is that based  on the m a x i m u m  p r i n -  
ciple [9], which p e r m i t s  us to impose l imi t a t ions  on 
U, for  example ,  of the fo rm U <- U 0. 

F o r  the solut ion let  us use  the m a x i m u m  pr inc ip le  
in that of its i n t e rp re t a t i ons  which pe r t a ins  to prob-  
l ems  with f ixed t ime [9] (in our case ,  ins tead of the 
t ime  in te rva l  it is the length of the segment  along the 
d i m e n s i o n l e s s  coordinate  ~ that  is fixed). Then the 
aux i l i a ry  funct ion 

H = T, [--(1 + U)~i § ~ 4- 0.5U21 
+ ~ [ - -  (1 + U) r2 + xx +0.5U"]. (6) 

Since r2 = ~'2 (~ = const ,  we have ~2 = - ] .  Moreover ,  

t t  = 2C == const >~ 0, 

a__~_~ =0, (7) 
OU 

El imina t ing  ~t  f rom sys tem (7), we find that 

U = 
A ,  + 2C xl (Ax)-I 

{[1 - -  C (Ax)-']~+0.5 [1 +2C x~ (5x) -~-1 (x, q- x2)}'T-q - C (Ax) - '  --1 

(s) 

The constant C as a function of the initial data of 
the problem can assume values from zero to infinity. 
In a specific case, to determine C, we have to inte- 
grate Eq. (4), substituting the expression in (8) for 
U in this case. Because the corresponding integral 
can be evaluated only numerically, we are unable, in 
general form, to derive the analytical relationship 
between C and-rl (0), "rz(~ ~'i (1), and R 1. 

As is eas i ly  seen,  the l imi t  va lues  of C co r r e spond  
to condi t ions  of a m a x i m u m  cooling coeff icient  a nd  
m a x i m u m  cooling capaci ty  for  al l  of the ba t t e ry  e le-  

men t s .  Indeed when C = 0 
Ax 

U =U,---- t 

[I +0.5  (x~ + x2)]~---1 

and as C ~ ~o, U = Uz = ft.  F o r  all  the i n t e rmed ia t e  

va lues  of C, U t < U < Uz. 
R e g a r d l e s s  of the magni tude  of C, the r i gh t -hand  

m e m b e r  of Eq. (4) always van i shes  when the t e m p e r a -  
tu re  d i f fe rence  r2 - 1"1 ac ros s  the ba t t e ry  becomes  
equal to 0.5 r~ or ~'1 = b - 1. It is na tu ra l  that the l imi t  
t e m p e r a t u r e  d i f fe rence  ac ros s  the ba t t e ry  s t r e a m l i n e d  
by flows of a heat c a r r i e r  [coolant] cannot  exceed the 
m a x i m u m  dif ference  ac ros s  the t h e r m o e l e c t r i c  e le -  
ment  in the absence  of a heat load which, as is well  
known [6], is equal to 0.5 T 2. 

The bas ic  p a r a m e t e r s  for  the t h e r m o e l e c t r i c  ba t -  
t e r i e s  with a va r i ab le  c u r r e n t  dens i ty  were  ca lcula ted  
with the aid of a computer .  F o r  the va r i ous  va lues  of 
the constant  C we found the funct ions  U(~ h) and U(~), 
the R t n u m b e r s ,  and the cooling coeff ic ients  e. The 

ca lcu la t ions  were  c a r r i e d  out for  a number  of values  
of the in i t ia l  t e m p e r a t u r e  ~-l(~ and for t e m p e r a t u r e  
d i f fe rences  of A1-! = T, (~ - T1 (1) in  the flow. The values  
of R 1 and e were  de t e rmined  by n u m e r i c a l  in tegra t ion  
of Eqs.  (4) and (5) with cons ide ra t ion  of (8), and here  

.c~ 0 ) 

d~l (9) 
RI = (1 + U) ~t--x~--0-5U ~' 

�9 i, ~ ) 

1 q2(1) ~ q, (1) 

ql(1) 
,?> 

1 (" U (U + "~2 - -  xi) d ~q (1 O) 

The t e m p e r a t u r e  va r i a t ion  along the ba t t e ry  can be 
found by in tegra t ing  (4) with cons ide ra t ion  of (8) and 
(9). Data on the change in c u r r e n t  dens i ty  U(~) along 
the length of the ba t t e ry  a re  obtained on subs t i tu t ion  

of ~-1(~) into (8). 
F i g u r e  1 shows the curves  of the change in c u r r e n t  

densi ty  along the ba t t e ry  as a funct ion of the junct ion 
t e m p e r a t u r e s  for  va r ious  va lues  of the p a r a m e t e r  C. 
When ~-2 = 0.6, the l imi t  d i f ference ac ros s  the ba t t e ry  
is z,~ = "r2 - ~-I = b - 1 = 0.117; the value of U at this 
point is independent  of C and equal to ~'1, i . e . ,  0.483. 
The cu rves  in Fig .  2 show the funct ion U(~) for  one 
va r i a t i on  of the t e m p e r a t u r e  condit ions (the values  of 
C a re  the same as in Fig.  1). 
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Fig.  2. C u r r e n t - d e n s i t y  d i s t r ibu t ion  
along ba t t e ry  length: ('r2 = 0.6, r [  ~ = 

= 0.58, riO) = 0,5). 

We obtained compara t ive  data on the e f f ic ienc ies  
of the ba t t e r i e s  opera t ing  under  the condi t ions  U(~) = 
= U = const  on the bas i s  of the r e l a t ionsh ips  p re sen t ed  
in [1,2].  To d e t e r m i n e - U  for  specif ied A~-l, rl(~ 7-2, 
and R 1 we have to solve the t r a n s c e n d e n t a l  equation 

A1q = [ , ~ o )  (~2 +0,5U")(1-]- ~)-l] 

• { 1-- exp [--  R~ (1 + ~J)]} . (11) 
Here  the cooling coeff icient  

7 =  _ ( 1 +  U) A~L 
(12) 

U [('c~ +1 +0.5U) U R i  - -  AZx 

F i g u r e  3--as  an example - - shows  two pa i r s  of cu rves  
which define the cooling coeff ic ient  as a funct ion of the 
p a r a m e t e r  R 1 for  a specif ied t e m p e r a t u r e  d i f fe rence  
Ar~. The cu rves  ident if ied by the l e t t e r  a de sc r ibe  
ba t t e r i e s  with an op t imum d i s t r ibu t ion  of the c u r r e n t  
dens i ty  over  the a rea ,  while the curves  identif ied with 
the le t te r  b r e fe r  to the ba t t e r i e s  with U = const .  The 
r e su l t ing  data show that the ba t t e ry  with the op t imum 
d i s t r ibu t ion  U(x) exhibi ts  the g rea tes t  energy  eff iciency.  
A re la t ive  i n c r e a s e  of 20-30% over  the cooling coef-  
f ic ient  of a ba t t e ry  with U = const  is a t tained.  The 
e = f(R) data a re  der ived  for the 0 to ~ in te rva l  of C. 
The re  is a monotonic  i n c r e a s e  in e(R) in the c o r r e -  
sponding range  of H, and e exhibits  a m a x i m u m .  When 
C ~ ~,  U = rl ,  i . e . ,  the ba t t e ry  is opera t ing  under  
condi t ions  of m a x i m u m  cooling capaci ty .  F o r  specif ied 

values  of r [  ~ , rl(i), and TZ, such a r eg ime  a s s u r e s  
a m i n i m u m  value for  Rll In accordance  with (9) and 
(10) 

1 In (14 b +  x~I~)(lmb +~o)) , (13) 
Ri = -~- (1__ b _r ~{1)) (1_~_ b _t_ T~o) ) 

f '1 -- T~o) 1 _ % b + 
e bhTi (b - - l )  In 1--b-:-x~ l) 

1 + b + ~i ~ ] 
+ (b-- l)In l + b  +~T)J " 04) 

The t e m p e r a t u r e  d i s t r ibu t ion  along the ba t t e ry ,  
defining the op t imum change in c u r r e n t  dens i ty ,  

"q = b - -  I + 2 b [ A e x p ( b R i ~ ) - - l ]  -1. 

Here 

A - -  
1 - -  b -~- zl~ " 

(15) 

e'go o.oot] ~ - -  ] 

Qo 

I ~  o,f 

~ o &ol o.t 

Fig.  3. Cooling factor  v e r s u s  p a r a m e t e r  
Rl ( r  2 = 0.6): 1) r [  ~ = 0.6; Ar l  = 0.08; 2) 

0.58 and 0.08. 

A thermal battery with a current density of U(~) = 

= eonst can no longer provide the same heating capacity 
as a battery with a variable U when U = rj and when 

the values of R1are equal. However, these maximum 
magnitudes for the cooling capacity differ only slightly, 

within the limits of tenths of a percent. Thus, the use 

of elements with variable dimensions is virtually 
without point in the case of a battery with a relatively 

small parameter R I (a small ratio of area to the water 

equivalent of the flow), where this battery is operating 

in a regime close to that of maximum cooling capacity. 

The greatest gain in efficiency is achieved through the 

use of a battery with a relatively large R I, in which 
case it is possible to achieve conditions for each of the 
elements that are close to the regime of the maximum 
cooling coefficient. 

If we know the current-density function U(~) along 

the battery, we can determine the number of elements 
per unit area for a specified current I: 

] ux 
n 

I l a d  
For practical purposes, in the place of a continuous 

change in the dimensions of the elements we can nat- 

urally use a stepwise variation in element: dimensions, 
limiting ourselves to two or three steps. 

This article describes a method for the optimization 
of thermoelectric cooling devices; an analogous ap- 

proach will enable us to raise the efficiency of heating 
installations and of thermoelectric generators. 

NOTATION 

Ti, 2 is the temperature in the fluid flow; TI(,~ ) is the 
temperature of the heat-transfer agent at the entrance; 

ATI,2 is the temperature difference along battery 
length; AT = T 2 - T I is the temperature drop across 

the battery thickness; S, d, l, and p are the area, 

thickness, length, and width of the battery. ~, X, and 
p are the reduced coefficients of emf thermal conduc- 
tivity, specific resistance; z = ez2/pX; I and j are the 

current intensity and density; s is the cross section 

of the element; n is the number of elements per unit 

area; WI, 2 is the water equivalent of the flow; x is the 
coordinate along the flow; ~ = x/l is the dimensionless 

coordinate; rl,2 = zTi,2 is the dimensionless tempera- 
ture; R = SX/Wd; U = o~ jd/X is the dimensionless cur- 
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r en t  dens i ty ;  q = ~TI ,2 /RI ,2  is  the d i m e n s i o n l e s s  coo l -  
ing and hea t ing  capac i ty ;  e = ql / (q2 - qt) is  the cool ing  
f ac to r ;  b = v'2"~72 + ] s y m b o l s :  1 r e f e r s  to the cool ing  
flow; 2 r e f e r s  to the hea t ing  flow; the o v e r s c o r e  denotes  
p a r a m e t e r s  of the b a t t e r y  with U(x) = cons t .  
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