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We have found the distribution for the density of the electric current
in a thermoelectric battery to ensure the greatest energy efficiency
under conditions of liquid-flow streamlining. The optimum current
density and the nature of its change along the battery are functions
of the temperature conditions, the cooling (refrigerating) capacity,
the parameters of the liquid flows, the geometric dimensions of the
battery, and the physical characteristics of the thermoelectric ele-
ments.

Semiconductor thermoelectric liquid-flow cooling
and heating devices operate under conditions in which
the thermoelectric elements—positioned along the
flow—operate under various temperature conditions.
Earlier [1, 2] we proposed methods of designing bat-
teries to ensure maximum energy efficiency, with
consideration of the limitations imposed on battery
dimensions; it was assumed in this case that the bat-
tery is made up of like elements and that the supply
current is identical for each. The efficiency of the
thermal battery can be improved by using a variety
of supply-current densities for the thermoelectric
elements situated along the liquid flow;this is achieved
most simply by using elements of various dimensions
{3). It is assumed in [3], as well as in later publica-
tions [4,5] devoted to the design of cooling and heating
mechanisms with maximum energy efficiency that the
current passing through each thermoelectric element
must correspond to the condition of a maximum coef-
ficient of energy efficiency. All of the battery elements
are usually series—connected into the electric circuit;
this forces us to change the dimensions of the elements
in accordance with the temperature distribution along
the battery. The magnitude of the current achieving
the maximum value for the conversion factor [6] is
given by
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When the current in each of the elements is subject
to relationship (1), the entire battery functions with
maximum energy efficiency. However, if a current
I = I, passes through each of the battery elements,
the cooling capacity of the elements is less than the
limit; therefore, to attain the specified capacity we
will have to increase the total number of elements or
the size of the battery. This becomes particularly
evident if the temperature difference AT = T, — T,
is not very great. In practice, the difference T, — T,
at the initial segment of the battery in a number of
cases may be equal to or less than zero. Here, rela-
tionship (1) loses significance and the method proposed
in [4, 5] cannot be used at all.

Let us consider the problem of finding the optimum
distribution for the dimensions of the battery elements
along the liquid flow (or what is the same, the distribu-
tion of the current density) to ensure a specific cooling
capacity for the batteries with maximum energy effi-
ciency, considering the specified area limitations.

The water equivalence of the flows and their initial
temperatures are assumed to be known.

To simplify the calculations, we will schematize
the actual conditions slightly. The coefficients for
the transfer of heat between the junctions and the liquid
flows are assumed to be rather large and we neglect
the temperature difference between the battery sur-
face and the liquid flows. In practical terms, as fol-
lows, for example, from [2,7], such conditions pre-
vail when Bi > 15-20, Moreover, we assume that the
water equivalent of the flow streamlining the hot-junc-
tion side is so great that we can neglect the tempera-
ture differences at the inlet and at the outlet. Such
conditions are characteristic of a number of installa-
tions employing intensive hot-junction cooling; these
generally are found in air and water conditioners.

In the case under consideration the system of dif-
ferential equations which, under steady-state condi-
tions, characterize the change in the heat content of
the parallel liquid flows streamlining the junctions of
the thermal battery have the form
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The boundary conditions T;(0) = T, and T,(0) =
= T Since the total cooling capacity of the battery
is specified, the temperature of the cooling flow at
the outlet is correspondingly specified as T{I) = T1(“
These conditions pertain to a single-pass flow; how-
ever, in this case of a constant T,(x), the results of
the calculation are independent of the respective direc-
tions of liquid motion.

Equations (2) and (3) can be presented in dimen-
sionless form, introducing the same variables and
dimensionless complexes as in reference [1]:
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Fig. 1. Current-density distribution
over battery versus temperature of

cold junctions (m = 0.6): 1) C = 0; 2)
C=0.01;3C=01;4C=1; 5)

C — oo,

We can now formulate the problem of calculating
the parameters for a battery with maximum energy
efficiency in the following manner. We have to deter-
mine a function U(¢), such that the solution of system
(4) and (5), satisfying the corresponding boundary con-

U=
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ditions, will yield the least value for q,(1) (it is clear
that the smallest value of q,(1) will correspond to the
maximum of the cooling coefficient &).

The formulated variational problem—with the con-
ditional extremum~—is the Mayer problem [8]. This
problem can be solved by classical methods. The most
common approach is that based on the maximum prin-
ciple [9], which permits us to impose limitations on
U, for example, of the form U = U,.

For the solution let us use the maximum principle
in that of its interpretations which pertains to prob-
lems with fixed time [9] (in our case, instead of the
time interval it is the length of the segment along the
dimensionless coordinate ¢ that is fixed). Then the
auxiliary function

H =¥ [—(+U)nu+ 1+ 0.5U7

+ Wy [— (14 U) 15 + 1, +0.5U7%. (6)
Since 7y = 72(0) = const, we have ¥, = —1. Moreover,
f = 2C = const >0,
oH
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Eliminating ¥, from system (7), we find that

The constant C as a function of the initial data of
the problem can assume values from zero to infinity.
In a specific case, to determine C, we have to inte-
grate Eq. (4), substituting the expression in (8) for
U in this case. Because the corresponding integral
can be evaluated only numerically, we are unable, in
general form, to derive the analytical relationship
between C and 7{), (%, 7{1), and Ry.

As is easily seen, the limit values of C correspond
to conditions of a maximum cooling coefficient and
maximum cooling capacity for all of the battery ele-
ments. Indeed when C =0

U=U;= At

1
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and as C =~ =, U= U, = 11. For all the intermediate
values of C, Uy < U < U,

Regardless of the magnitude of C, the right-hand
member of Eq. (4) always vanishes when the tempera-
ture difference 1, — 7, across the battery becomes
equal to 0.5 7 or 7{ =b —~ 1. It is natural that the limit
temperature difference across the battery streamlined
by flows of a heat carrier [coolant] cannot exceed the
maximum difference across the thermoelectric ele-
ment in the absence of a heat load which, as is well
known [6], is equal to 0.5 7.

The basic parameters for the thermoelectric bat-
teries with a variable current density were calculated
with the aid of a computer. For the various values of
the constant C we found the functions U(ry) and U(¢),
the R, numbers, and the cooling coefficients €. The
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calculations were carried out for a number of values
of the initial temperature 7-1(0) and for temperature
differences of A1y = 71(0) - 71(1) in the flow. The values
of Ry and € were determined by numerical integration
of Egs. (4) and (5) with consideration of (8), and here
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The temperature variation along the battery can be
found by integrating (4) with consideration of (8) and
(9). Data on the change in current density U(£) along
the length of the battery are obtained on substitution
of 74(¢) into (8).

TFigure 1 shows the curves of the change in current
density along the battery as a function of the junction
temperatures for various values of the parameter C.
When 7, = 0.6, the limit difference across the battery
iS AT =17 ~ 7 =b — 1 = 0.117; the value of U at this
point is independent of C and equal to 74, i.e., 0.483.
The curves in Fig. 2 show the function U(¢) for one
variation of the temperature conditions (the values of
C are the same as in Fig. 1).
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Fig. 2. Current-density distribution
along battery length: (1, = 0.6, 71(0) =
=0.58, {1 = 0.5).

We obtained comparative data on the efficiencies
of the batteries operating under the conditions U(£) =
= U = const on the basis of the relationships presented
in [1,2]. To determine U for specified Ay, 71(0), Ty,
and Ry we have to solve the transcendental equation

Aty = ¥ — (12 “;‘0'50—2)( + Oy
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Here the cooling coefficient
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Figure 3—as an example—shows two pairs of curves
which define the cooling coefficient as a function of the
parameter Ry for a specified temperature difference
ATy, The curves identified by the letter @ describe
batteries with an optimum distribution of the current
density over the area, while the curves identified with
the letter b refer to the batteries with U = const. The
resulting data show that the battery with the optimum

distribution U(x) exhibits the greatest energy efficiency.

A relative increase of 20—30% over the cooling coef-
ficient of a battery with U = const is attained. The

e = f{R) data are derived for the 0 to « interval of C.
There is a monotonic increase in €(R) in the corre-
sponding range of R, and € exhibits 2 maximum. When
C — =, U= 7, i.e., the battery is operating under
conditions of maximum cooling capacity. For specified
values of Tl(o) ) 71(1), and 7,, such a regime assures

a minimum value for Ri; In accordance with (9) and
(10)
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The temperature distribution along the battery,
defining the optimum change in current density,

T=b—1+4 2[Aexp (bR, E) —1] % (15)
Here
I+ o4 ®
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Fig. 3. Cooling factor versus parameter
Ry(ry, = 0.6): 1) 749 = 0.6; A7y = 0.08; 2)
0.58 and 0.08.

A thermal battery with a current density of U(¢) =
= const can no longer provide the same heating capacity
as a battery with a variable U when U = 7, and when
the values of R; are equal. However, these maximum
magnitudes for the cooling capacity differ only slightly,
within the limits of tenths of a percent. Thus, the use
of elements with variable dimensions is virtually
without point in the case of a battery with a relatively
small parameter Ry (a small ratio of area to the water
equivalent of the flow), where this battery is operating
in a regime close to that of maximum cooling capacity.
The greatest gain in efficiency is achieved through the
use of a battery with a relatively large Ry, in which
case it is possible to achieve conditions for each of the
elements that are close to the regime of the maximum
cooling coefficient.

If we know the current-density function U(¢) along
the battery, we can determine the number of elements
n per unit area for a specified current I:

j U
I Tad’

For practical purposes, in the place of a continuous
change in the dimensions of the elements we can nat-
urally use a stepwise variation in element dimensions,
limiting ourselves to two or three steps.

This article describes a method for the optimization
of thermoelectric cooling devices; an analogous ap-
proach will enable us to raise the efficiency of heating
installations and of thermoelectric generators.

NOTATION

Ty, is the temperature in the fluid flow; Ti(,oz) is the
temperdture of the heat-transfer agent at the entrance;
AT, , is the temperature difference along battery
length; AT = T, — T, is the temperature drop across
the battery thickness; S, d, I, and p are the area,
thickness, length, and width of the battery. «, X, and
p are the reduced coefficients of emf thermal conduc~
tivity, specific resistance; z = ¢/pA; T and j are the
current intensity and density; s is the cross section
of the element; n is the number of elements per unit
area; Wi;g is the water equivalent of the flow; x is the
coordinate along the flow; £ =x/! is the dimensionless
coordinate; 71;2 = zTy 4 is the dimensionless tempera-
ture; R = 8A/Wd; U = o jd/A is the dimensionless cur-
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rent density; q = ATI,Z/Ri,z is the dimensionless cool-
ing and heating capacity; € = q;/(q, — q¢) is the cooling
factor; b =vZ7, + 1 symbols: 1 refers to the cooling
flow; 2 refers to the heating flow; the overscore denotes
parameters of the battery with U(x) = const.
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